Exercise 74

Where is the function $h(x)=|x-1|+|x+2|$ differentiable? Give a formula for h^{\prime} and sketch the graphs of h and h^{\prime}.

Solution

Rewrite the function for $h(x)$.

$$
\begin{aligned}
h(x)=|x-1|+|x+2| & =\left\{\begin{array}{ll}
x-1 & \text { if } x-1 \geq 0 \\
-(x-1) & \text { if } x-1<0
\end{array}+ \begin{cases}x+2 & \text { if } x+2 \geq 0 \\
-(x+2) & \text { if } x+2<0\end{cases} \right. \\
& =\left\{\begin{array}{ll}
x-1 & \text { if } x \geq 1 \\
1-x & \text { if } x<1
\end{array}+ \begin{cases}x+2 & \text { if } x \geq-2 \\
-x-2 & \text { if } x<-2\end{cases} \right. \\
& = \begin{cases}(1-x)+(-x-2) & \text { if } x<-2 \\
(1-x)+(x+2) & \text { if }-2 \leq x \leq 1 \\
(x-1)+(x+2) & \text { if } x>1\end{cases} \\
& = \begin{cases}-2 x-1 & \text { if } x<-2 \\
3 & \text { if }-2 \leq x \leq 1 \\
2 x+1 & \text { if } x>1\end{cases}
\end{aligned}
$$

Below is a graph of $h(x)$ versus x.

Although the function is continuous, there are kinks in the curve at $x=-2$ and $x=1$, which means the slope (or derivative) is undefined there. That is, h is not differentiable at 1 and 2.

The derivative of h is

$$
h^{\prime}(x)= \begin{cases}-2 & \text { if } x<-2 \\ 0 & \text { if }-2<x<1 \\ 2 & \text { if } x>1\end{cases}
$$

and its graph versus x is shown below.

